
15.IR_Receiver

Introduction
Each button of an IR remote control (as shown below) has a string of specific

encoding. When a button is pressed, the IR transmitter in the remote control will send

out the corresponding IR encoding signals. On the other side, when the IR receiver

receives certain encoding signals, it will decode them to identify which button is

pressed.

Hardware Required
 1 * Raspberry Pi

 1 * Breadboard

 1 * Network cable (or USB wireless network adapter)

 1 * IR Receiver module

 1 * IR Remote

 Several Jumper Wires

Principle

IR Receiver Module

Infrared (IR) communication is a widely used and easy to implement wireless

technology that has many useful applications. The most prominent examples in day to

day life are TV/video remote controls, motion sensors, and infrared thermometers.

There are plenty of interesting Arduino projects that use IR communication too. With

a simple IR transmitter and receiver, you can make remote controlled robots, distance

sensors, heart rate monitors, DSLR camera remote controls, TV remote controls, and

lots more Infrared radiation is a form of light similar to the light we see all around us.

The only difference between IR light and visible light is the frequency and

wavelength. Infrared radiation lies outside the range of visible light, so humans can’t

see it:

15.IR_Receiver

Schematic Diagram

Experimental Procedures

Raspberry Pi T-Cobbler IR Receiver Module

GPIO0 GPIO17 SIG

5V 5V0 VCC

GND GND GND

Step 1: Build the circuit

15.IR_Receiver

For C Language Users

Step 2:Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/15.IR_Receiver

Note: Change directory to the path of the code in this experiment via cd.

Step 3: Compile the code.

gcc 15.IR_Receiver.c -o IR_Receiver.out -lwiringPi

Step 4: Run the executable file .

sudo ./IR_Receiver.out

Here you can see the LED on the module blinking, and "Received infrared. cnt = xxx"

will be printed on the screen.

Code

#include <wiringPi.h>

#include <stdio.h>

#define IR 0

int cnt = 0;

15.IR_Receiver

void myISR(void)

{

printf("Received infrared. cnt = %d\n", ++cnt);

}

int main(void)

{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

printf("setup wiringPi failed !");

return 1;

}

if(wiringPiISR(IR, INT_EDGE_FALLING, &myISR) == -1){

printf("setup ISR failed !");

return 1;

}

//pinMode(IR, INPUT);

while(1);

return 0;

}

For Python Language Users

Step 2: Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run the code.

sudo python3 15.IR_Receiver.py

15.IR_Receiver

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

IrPin = 11

count = 0

def setup():

GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

GPIO.setup(IrPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def cnt(ev=None):

global count

count += 1

print ('Received infrared. cnt = ', count)

def loop():

GPIO.add_event_detect(IrPin, GPIO.FALLING, callback=cnt) # wait for falling

while True:

pass # Don't do anything

def destroy():

GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

setup()

try:

15.IR_Receiver

loop()

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

destroy() will be executed.

destroy()

Phenomenon Picture

	Introduction
	Hardware Required
	Principle
	Note: Change directory to the path of the code in
	Code
	}
	For Python Language Users

	Step 2: Open the code file.
	Step 3: Run the code.
	 Code
	 destroy()
	Phenomenon Picture

